SUMMARY OF CHAPTER 4

Inst. Shifa Alamoodi
Inst. Mona Mansoori
Mathematics Department
King Abdulaziz University

CONCLUSION (CHAPTER 4)

Notation $1|S|=$ number of vectors in S.
$\underline{\text { CASE (I) }}$ To prove the set $S=\left\{\underline{v_{1}}, \underline{v_{2}}, \ldots, \underline{v_{n}}\right\}$ is span for a vector space V, we have to show that for any vector $u \in V$ we have

$$
c_{1} \underline{v_{1}}+c_{2} \underline{v_{2}}+\ldots+c_{n} \underline{v_{n}}=\underline{u} \text { for scalars } c_{i} \in \mathbb{R}
$$

(1) If the system $A c=\underline{u}$ is a square system (i.e. $|S|=\operatorname{dim}(V)$), we find the determinant of $|A|$, we have two cases:
(a) $|A| \neq 0$, then the system has a unique solution. So any vector in V can be written as a linear combination of the vectors of S. Thus S spans V.
(b) $|A|=0$, since $|S|=\operatorname{dim}(V)$ (by theorem 4.12). We prove that S is linearly dependent and hence S does not span V.

OR "rarely to use" find the augmented matrix of the system and use Gaussian elimination to deduce if the system has infinite number of solutions (so S spans V) or no solution (so S does not $\operatorname{span} V$).
(2) "rarely occurs" If the system $A \underline{c}=\underline{u}$ is not square system (i.e. $|S| \neq$ $\operatorname{dim}(V))$, we should find the
augmented matrix and use Gaussian elimination, then consider the three cases of solutions
\star No solution (not span)
\star Infinite number of solutions (S is a spans V)
\star Unique solution (S is a spans V)

CASE (II) To prove the set $S=\left\{\underline{v_{1}}, \underline{v_{2}}, \ldots, \underline{v_{n}}\right\}$ is linearly independent, we have to show that if the vector equation

$$
c_{1} \underline{v_{1}}+c_{2} \underline{v_{2}}+\ldots+c_{n} \underline{v_{n}}=0 \text { has only the trivial solution, }
$$

(1) If $|S|=2$, then use (theorem 4.8) $\underline{v_{1}} \neq k \underline{v_{2}} \Longleftrightarrow S$ is linearly independent
(2) If $|S|>2$, see if the homogeneous system $A \underline{c}=0$ is a square system (i.e. $|S|=\operatorname{dim}(V)$), we find the determinant of $|A|$, we have two cases:
(a) $|A| \neq 0$, then the homogeneous system has a unique solution which is the trivial solution. So S is linearly independent set of vectors.
(b) $|A|=0$, then there is infinite number of solutions. So S is linearly dependent set of vectors.
(3) If the homogeneous system $A \underline{c}=0$ is not square system (i.e. $|S| \neq$ $\operatorname{dim}(V))$, we should find the augmented matrix and use Gaussian elimination, then consider the two cases of solutions
\star Infinite number of solutions (S is linearly dependent)
\star Unique solution which is the trivial solution (S is linearly independent)

IMPORTANT THEOREMS

Theorem 2 (4.8) Two vectors \underline{u} and \underline{v} in a vector space V are linearly dependent iff one vectoer is a scalar multiple of the other. (i.e. $\underline{u}=k \underline{v}$)

Theorem 3 (4.10) If $S=\left\{\underline{v_{1}}, \underline{v_{2}}, \ldots, \underline{v_{n}}\right\}$ is a basis for a vector space V, then every set containing more than n vectors in V is linearly dependant.

Theorem 4 (4.11) If a vector space V has one basis with n vectors, then every basis for V has n vectors.

Theorem 5 (4.12) Let V be a vector space of dimension n.

1. If $S=\left\{\underline{v_{1}}, \underline{v_{2}}, \ldots, \underline{v_{n}}\right\}$ is linearly independent set of vectors in V, then S is a basis for V.
2. If $S=\left\{\underline{v_{1}}, \underline{v_{2}}, \ldots, \underline{v_{n}}\right\}$ spans V, then S is a basis for V.

CONCLUSION (CHAPTER 4)

Let $\operatorname{dim}(V)=n$, and $S=\left\{\underline{v_{1}}, \underline{v_{2}}, \ldots, v_{k}\right\} \subseteq V$. We have three cases concerning k

1. If $k>n$
2. If $k<n$
3. If $k=n$
(1) If $k>n$, then
(i) is linearly dependent set (by theorem 4.10)
(ii) S may span V or S may not span V.
(ii) S span V if there exists $S_{1} \subset S$ such that $\left|S_{1}\right|=n$ and S_{1} is linearly independent
Example $6 V=R^{2}, S=\{\underbrace{(1,2)}_{\underline{v_{1}}}, \underbrace{(2,3)}_{\underline{v_{2}}}, \underbrace{(3,4)}_{\underline{v_{3}}}\}$ is linearly dependent ($\underline{v_{3}}=$ $-\underline{v_{1}}+2 \underline{v_{2}}$) and span R^{2}, Because there exist

$$
S_{1}=\{\underbrace{(1,2)}_{\underline{v_{1}}}, \underbrace{(2,3)}_{\underline{v_{2}}}\}
$$

such that $S_{1} \subset S$ and S_{1} is linearly independent $\left(\underline{v_{1}} \neq k \underline{v_{2}}\right)$
Example $7 V=R^{2}, S=\{\underbrace{(1,2)}_{\underline{v_{1}}}, \underbrace{(2,4)}_{\underline{v_{2}}}, \underbrace{(3,6)}_{\underline{v_{3}}}\}$ is linearly dependent $\underline{v_{3}}=$ $\left.\underline{v_{1}}+\underline{v_{2}}\right)$ and S cannot span R^{2}, Because there exist no S_{1} such that $S_{1} \subset S$ and $\overline{S_{1}}$ is linearly independent $\left(\underline{v_{1}} \neq k \underline{v_{2}}\right)$

For example $S_{1}=\{(\underbrace{1,2}_{\underline{v_{1}}}), \underbrace{(2,4)}_{\underline{v_{2}}}\}$ not linearly independent $\underline{v_{1}}=2 \underline{v_{2}}$
For example $S_{1}=\{\underbrace{(1,2)}_{\underline{v_{1}}}, \underbrace{(3,6)}_{\underline{v_{3}}}\}$ not linearly independent $\underline{v_{1}}=3 \underline{v_{3}}$
For example $S_{1}=\{\underbrace{(2,4)}_{\underline{v_{2}}}, \underbrace{(3,6)}_{\underline{v_{3}}}\}$ not linearly independent $\underline{v_{2}}=\frac{3}{2} \underline{v_{2}}$
(2) If $k<n$, then
(i) S cannot span V (by theorem 4.11)
(ii) S may linearly dependent or may linearly independent.

Example $8 V=R^{3}, S=\{\underbrace{(1,2,0)}_{\underline{v_{1}}}, \underbrace{(2,4,0)}_{\underline{v_{2}}}\}$ is linearly dependent $\left(\underline{v_{1}}=2 \underline{v_{2}}\right)$
Example $9 \quad V=R^{3}, S=\{\underbrace{(1,2,0)}_{\underline{v_{1}}}, \underbrace{(2,6,1)}_{\underline{v_{2}}}\}$ is linearly independent $\left(\underline{v_{1}} \neq k \underline{v_{2}}\right)$
(3) $k=n$, then by (theorem 4.12)
(i) S is linearly independent $\Rightarrow S$ is a basis for V

$$
\text { (ii) } S \text { spans } V \Rightarrow S \text { is a basis for } V
$$

i.e.

$$
\begin{aligned}
S \text { is linearly independent } & \Leftrightarrow S \text { span } V \\
S \text { is linearly dependent } & \Leftrightarrow S \text { cannot span } V
\end{aligned}
$$

Example $10 V=R^{2}, S=\{(4,6),(6,9)\}$ is linearly dependent $((4,6)=$ $\frac{2}{3}(6,9)$, hence S cannot span R^{2}.

Example $11 V=R^{2}, S=\{(1,2),(2,3)\}$ is linearly independent $((1,2) \neq$ $k(2,3))$, hence S spans R^{2}.

Problem 12 Determine whether S is a basis or not for the given space, use the above summery and try to explain the two conditions of the basis (L.I. \& Span)

1. $V=R^{2}, S=\{(-1,2),(1,-2),(2,4)\}$
2. $V=R^{2}, S=\{(3,-2),(4,5)\}$
3. $V=R^{2}, S=\{(-4,5),(0,0)\}$
4. $V=R^{2}, S=\{(6,-5),(12,-10)\}$
5. $V=R^{3}, S=\{(2,1,-2),(-2,-1,2),(4,2,-4)\}$
6. $V=R^{3}, S=\{(7,0,3),(8,-4,1)\}$
7. $V=R^{4}, S=\{(-1,2,0,0),(2,0,-1,0),(3,0,0,4),(0,0,5,0)\}$
8. $V=R^{2}, S=\{(5,0),(5,-4)\}$
9. $V=R^{2}, S=\{(-1,2),(2,-4)\}$
10. $V=R^{2}, S=\{(-1,4),(4,-1),(1,1)\}$
11. $V=R^{3}, S=\{(6,7,6),(3,2,-4),(1,-3,2)\}$
12. $V=R^{3}, S=\{(-2,5,0),(4,6,3)\}$
13. $V=R^{3}, S=\{(1,-2,0),(0,0,1),(-1,2,0)\}$
14. $V=R^{3}, S=\{(1,-4,1),(6,3,2)\}$
15. $V=R^{3}, S=\{(4,3,2),(0,3,2),(0,0,2)\}$
